Introduction

The two implant mandibular overdentures was considered the standard of care for edentulous patients. Implant supported overdentures improve retention, stability, patient satisfaction compared to conventional dentures. The “All-on-four” concept was developed and widely analyzed in the 1990s through studies by Paulo Maló that was funded by Nobel Biocare. It include rehabilitation of the edentulous maxilla and mandible with fixed prosthesis by placing four implants in the anterior region, where bone density is higher. The four implants support a fixed prosthesis with 12 teeth and loaded immediately on the same day of surgery. This concept involve using only four implants to support the prosthesis; two axially anterior implants and two distally tilted posterior implants, the All-on-Four® treatment concept used to rehabilitate edentulous arches with immediately loaded fixed prosthesis on the same day of surgery. Tilting the distal implants gives some great advantages as: reducing the cantilever length, implant can be anchored in the cortical bone of the sinus wall and nasal fossa improving its osseointegration and stability; increasing the inter-implant distance, allows for better load distribution, maximize the use of the available bone with no need for bone augmentation allowing immediate loading; it also allow using longer implants which help increasing the implant primary stability due to increased bone-to-implant surface area. Prosthetic options for “all-on-four” treatment concept include milled bar overdenture and fixed prostheses.

Implant supported over-denture shows improved stability, retention and offers considerable functional and psychosocial enhancement compared to conventional one. The McGill consensus statement in 2002 stated that mandibular two-implant overdentures are minimum treatment care for edentulous patients, however, technical and biological complications may occur. Successful overdenture treatment can also be provided for the maxilla depending on some factors which influence implants and prosthesis success as: quality and quantity of remaining bone, and the number and location of implants. Bar represents an excellent option for attachment system that provides greater retention thanks to its splining effect, it allows better force distribution, correct severe implants unparallel orientations, also the retentive components or clips are exchangeable and can be reactivated. Milled bar provides better oral hygiene care and improves Patients’ comfort due to increased retention and stability and avoid soft tissues trauma due to their limited tissue rest.

Fixed full-arch prostheses are available in 2 types according to their method of attachment to the implants: cement retained or screw retained prostheses. Selecting the proper type is governed by several factors as retrievability, the framework passivity, space requirements, retention, simplicity of fabrication, occlusion, esthetics, , cost and complications.

Screw retained fixed prostheses have some great advantages as: Retrievability which is the ability to detach the prosthesis for replacement when needed with no harm of the restoration during removal. Retention in screw-retained restorations is enhanced by the friction resistance between the internal threads of the implant and the fastening screw. Immediate loading of edentulous jaws with screw-retained interim prostheses following the All-on-Four® surgical protocol has been found to provide the patient with function and esthetics at the same day of
surgery.55

(Oral Health-Related Quality of Life) “OHQoL” describes different aspects of life being affected by the oral health. These include the ability to function (biting, chewing, and speaking), psychological status (self-esteem, satisfaction with appearance), social factors and pain or discomfort.

The OHIP-14 is one of the most widely used OHQoL indicators internationally, was developed as a shorter version of the OHIP-49. It consists of 14 items that explore seven dimensions of impact: functional limitation, physical pain, psychological discomfort, physical disability, psychological disability, social disability and handicap.56

Materials and methods

Six patients wearing a mandibular implant supported overdenture and maxillary conventional denture, their age ranged from 55 to 65 years, were selected from outpatient clinic of the prosthodontic department, faculty of dentistry, Mansoura University.

Inclusion criteria: All patients wearing conventional complete denture. All patients were all healthy with no presence of any systemic disease. There is sufficient bone quantity and quality in the anterior maxillary region. A minimum of 15 mm restorative space must be available.

After the patients were informed about the line of treatment they all signed a written consent. The study was conducted according to the ethical principles stated and approved by the ethical committee of the faculty of dentistry.

Each patient received four implants according to the All-on-four® concept. The patients were classified into 2 groups: Group I received implant supported milled bar overdenture. Group II received implant supported fixed prosthesis.

Presurgical protocol

CBCT was done to determine the proposed implant position. An acrylic resin radiographic template was duplicated from existing denture. Three gutta-percha markers were used to estimate the average thickness of the soft tissue covering the residual alveolarridge and the thickness of the acrylic resin. Using (Dual scan protocol)58, the patients were double-scanned using CBCT and the two data sets were merged. Every patient’s surgery was virtually planned then an individualized surgical template was made. Two implants were designed to be at canine area parallel to the vertical axis while the posterior ones were redesigned to be at the 2nd premolar area and were tilted distally forming a 30-degree angle from the vertical plane. Prototyping of surgical guide with openings for implants and anchor pins was constructed with metal tubes that guide implant drilling.

Surgical Protocol

The stent was fixed in the correct position in patient’s mouth by inserting the anchor pins into the underlying bone. The soft tissue was removed from the crest of the ridge using a circular incision punch. Depth drills of successive diameters that fits accurately the diameters of the hand sleeves were used to create the final depth of the implant osteotomy sites. Implants were taken from their vials and screwed into prepared osteotomy sites. Straight multiunit abutments were screwed in the anterior implants and 30-degree angled multiunit abutments were screwed into the posterior ones. Postoperative panoramic radiograph was done to verify the implant position.

Prosthetic Protocol

Modification the old denture was done by removing the denture flanges and the palatal portion also four holes are hollowed in the denture base opposite to the multiunit abutments. Auto polymerized acrylic resin was used to pick up the temporary cylinder metal abutment caps to the modified denture. After 3 months of osseointegration period, a master cast was obtained by open tray impression technique. The provisional acrylic denture was unscrewed from the multiunit abutments. The long transfer copings were screwed to the multiunit abutments and splinted with orthodontic ligature wire then light cured composite resin. A stock tray was perforated opposite to each abutment to permit unscrewing of the transfer after impression setting. Light body rubber base silicon impression material was injected around the transfer copings and the tray was filled with a heavy body impression material then was inserted intraorally. The long transfer copings were unscrewed from the openings of the tray to be removed with the impression. Abutment analogues were screwed into the transfer coping. The Tissue replica was used around the abutment analogues then impression was poured to obtain master cast. The cast was scanned and the bridge was built virtually. A bridge pattern was milled using duralay® autopolymerized resin. The passivity of the resin pattern (jig) was checked in the patient mouth. The bridge pattern was sprued, invested and casted with molten Co-Cr alloy. The fit of the metal bridge then was verified intraorally. Porcelain was built up and fused to the metal foundation.

Plastic cylinder caps were screwed to the multiunit abutment analogues. The cast was scanned. The bar dimensions were virtually determined. The cantilevered portion distal to the bar not exceeding 1.5 times the antero-posterior distance between the implants. Four Locator attachments were attached virtually to the top of the bar between implants. After the design was verified in software (Exocad), the bar resin pattern was 3D printed by rapid prototyping process. The bar resin pattern was tried intraorally to check the fitting. The bar pattern was sprued, invested and casted with molten Co-Cr alloy. Four metallic caps containing nylon rings for the locator attachments were snapped on the bar. The bar was returned to the master cast and the cast was scanned again. The bar housing was virtually designed covering the entire surface of the milled bar. The housing was milled from polyetheretherketone (PEEK) material. The teeth of the conventional denture was duplicated using a silicone mold which was repositioned over the cast. The denture was flanked, acrylic resin was packed and the denture was finished and polished. The bar was...
screwed to the abutment and the denture was seated. The PEEK housing with the attached denture were snapped on the bar and the occlusion was checked.

Evaluation
Oral Health-Related Quality of Life (OHRQoL assessment)

OHIP-14 was used for measuring OHRQoL. It was derived from the original extended version, OHIP-49, which was developed in 1994 by Slade & Spencer. The OHIP-14 questionnaires were translated into Arabic by linguistic professionals who worked in collaboration with the authors to prepare the final version. A draft of the questionnaire was prepared based on a literature review and expert opinions. An in-depth interview of four patients to identify any questions that required revision. All patients were asked to evaluate how often they felt and experienced an impact on oral health prior to and after prosthetic treatment with either implant overdenture or fixed implant prostheses by selecting one of the five responses for each item as a five-point Likert scale coded 0 (“never”), 1 (“hardly”), 2 (“occasionally”), 3 (“fairly often”), and 4 (“very often”). Total OHIP-14 scores and subtotal scores for each dimension were calculated by adding together each item score; higher scores indicated worse OHRQoL.

Results
In comparison of OHIP scores for all questions (items) for all groups, There was a significant difference in all questions of OHIP between groups except question 12 (difficulty in doing jobs). For all questions there was a significant difference between CD and FP and between CD and MB. However, no significant difference was noted between FP and MB for all items. In comparison of OHIP scores for all domains for all groups, there was a significant difference in all domains of OHIP between groups. For all questions there was a significant difference between CD and FP and between CD and MB. However, no significant difference was noted between FP and MB for all domains. In comparison of total OHIP scores for all groups, there was a significant difference in total OHIP between groups. For total OHIP there was a significant difference between CD and FP and between CD and MB. However, no significant difference was noted between FP and MB.

Table 1: Results of OHIP scores for questions for all groups

<table>
<thead>
<tr>
<th>Domain</th>
<th>Item</th>
<th>CD</th>
<th>FP</th>
<th>MB</th>
<th>Kruskal Wallis test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional limitation</td>
<td>OHIP1 Pronouncing sounds</td>
<td>2.33 .82</td>
<td>.50 .55</td>
<td>.67 .52</td>
<td>.005*</td>
</tr>
<tr>
<td></td>
<td>OHIP2 Sense of taste</td>
<td>2.17 .75</td>
<td>.83 .41</td>
<td>.50 .55</td>
<td>.004*</td>
</tr>
<tr>
<td>Physical pain</td>
<td>OHIP3 Painful aching</td>
<td>3.00 .63</td>
<td>.67 .52</td>
<td>.67 .52</td>
<td>.002*</td>
</tr>
<tr>
<td></td>
<td>OHIP4 Comfort on eating</td>
<td>2.83 .75</td>
<td>.17 .41</td>
<td>1.00 .63</td>
<td>.001*</td>
</tr>
<tr>
<td>Psychological discomfort</td>
<td>OHIP5 Self-consciousness</td>
<td>2.17 .75</td>
<td>.67 .52</td>
<td>.83 .75</td>
<td>.011*</td>
</tr>
<tr>
<td></td>
<td>OHIP6 Feeling tense</td>
<td>1.83 .75</td>
<td>.50 .55</td>
<td>.67 .52</td>
<td>.012*</td>
</tr>
<tr>
<td>Physical disability</td>
<td>OHIP7 Unsatisfactory diet</td>
<td>2.33 .52</td>
<td>.50 .55</td>
<td>.83 .41</td>
<td>.001*</td>
</tr>
<tr>
<td></td>
<td>OHIP8 Interrupting meals</td>
<td>2.50 .55</td>
<td>.50 .55</td>
<td>.83 .75</td>
<td>.003*</td>
</tr>
<tr>
<td>Psychological disability</td>
<td>OHIP9 Difficult to relax</td>
<td>1.17 .75</td>
<td>.33 .52</td>
<td>.50 .55</td>
<td>.007*</td>
</tr>
<tr>
<td></td>
<td>OHIP10 Embarrassing</td>
<td>2.17 .75</td>
<td>.50 .55</td>
<td>.83 .41</td>
<td>.004*</td>
</tr>
</tbody>
</table>
andibular overdentures: a 3
t difference in all 7
62
59
t ure and complete denture. For total OHIP
l questions (items) for all groups There was a
etained implant
 ted between FP and MB for all items.

be due to the effect of self preferences, patients who receive
with statistically significant difference in the psychological
than patients treated with removable implant overdentures
that patients with fixed prostheses reported better OHRQ
was in contrast to the study by Brennan et al.
with removable implant supported prostheses. This finding
was significant difference in the degree of improvements in
domains of OHIP when comparing fixed implant prostheses
was in line with what was mentioned by
which was developed
In Comparison of OHIP
scores for all questions (items) for all groups There was a
significant difference in all questions of OHIP between
groups except question 12 (difficulty in doing jobs).This
was in contrast with what was mentioned by
that significant differences were found between groups for all
individual questionnaire items except for functional
limitations item. This may be due to the difference in
measuring tool in that study as the authors modify the
OHIP-14 questionnaire and only used 9 items of them with
other 2 items from a different questionnaireFor all
questions there was a significant difference between CD
and FP and between CD and MB. However, no significant
difference was noted between FP and MB for all items.
This was agreed with De souza and his colleagues
who found no significant differences in any items between
implant overdenture and fixed prosthesis. In Comparison of
OHIP scores for all Domains for all groups, there was a
significant difference between CD and MB. However, no significant
difference was noted between treatment groups
when comparing implant retained overdentures with
conventional complete dentures. This contrast may be
attributed to the short follow up period in that study at only
3 months after treatment that may be inadequate to judge its
perception by the patient.

Discussion
OHIP-14 is one of the most commonly used instruments for
measuring OHROqOL. It was chosen for this study over the
original extended version, OHIP-49, which was developed
in 1994 as it may be impractical sometimes in clinical
application because of its length. In Comparison of OHIP
scores for all questions (items) for all groups There was a
significant difference in all questions of OHIP between
groups except question 12 (difficulty in doing jobs).This
was in contrast with what was mentioned by
that significant differences were found between groups for all
individual questionnaire items except for functional
limitations item. This may be due to the difference in
measuring tool in that study as the authors modify the
OHIP-14 questionnaire and only used 9 items of them with
other 2 items from a different questionnaireFor all
questions there was a significant difference between CD
and FP and between CD and MB. However, no significant
difference was noted between FP and MB for all items.
This was agreed with De souza and his colleagues
who found no significant differences in any items between
implant overdenture and fixed prosthesis. In Comparison of
OHIP scores for all Domains for all groups, there was a
significant difference between CD and MB. However, no significant
difference was noted between treatment groups
when comparing implant retained overdentures with
conventional complete dentures. This contrast may be
attributed to the short follow up period in that study at only
3 months after treatment that may be inadequate to judge its
perception by the patient.

Table 2: Results of total OHIP scores for all groups

| Table 2: Results of total OHIP scores for all groups |
|-----------------|--------------|------|------|------|------|
| CD | FP | MB |
| X | SD | X | SD | X | SD |
| 2.17 | .92 | .46 | .50 | .65 | .55 |

References

Conclusion

16. of different implant positions on strain developed around four implants supporting a mandibular overdenture with rigid telescopic copings. Quintessence Int. 2013;44:679-86

32. magnetic attachment effect on peri-implant tissue health of immediate loaded two implants retaining a mandibular overdenture: a 1-year randomised...

42. Rigolizzo M. “All-on-4” immediate-function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clinical implant dentistry and related research. 2012;14:e139-e50.

47. results of maxillary and mandibular implant-retained bar overdentures carried out on oxidized (TiUnite™) replace select implants placed in regenerated bone: a clinical case. Quintessence Int. 2014;45:135-40.

