Comparison of the Effect of Three Remineralizing Agents on Surface Microhardness and Surface Roughness of Primary Teeth Enamel

Sara I. Rakha *, Salwa M. Awad **, Ahmed H. Wahba ***

* Researcher, B.D.S Faculty of Dentistry, Mansoura University
** Professor and Head of Pediatric Dentistry Department, Faculty of Dentistry, Mansoura University
*** Lecturer of Pediatric Dentistry, Faculty of Dentistry, Mansoura University

Abstract:
Background: Osteoporosis is a worldwide health problem with serious impact on the human population, particularly the post-menopausal period.
Aim: Prevention of initial dental caries has an essential role instead of the treatment especially in children.
Materials and methods: Sixty extracted primary molars were divided into four groups (n=15) as follow; group A (Bioactive glass paste), group B (CPP-ACP paste– GC tooth mousse), group C (fluoride varnish—Fluor Protector), group D (control group). The surface microhardness (Vickers Microhardness machine) and surface roughness (Stylus Profilometer) were measured for the control group D as a baseline and for the other three groups after demineralization. After that, different remineralizing agents for 10 days were applied. Then another surface microhardness and roughness tests were done for all groups. The data were collected and statistically analyzed using One Way ANOVA test with Post Hoc Tukey test.
Results: Both BAG paste and CPP-ACP paste have a highly significant recovery in compared to fluoride varnish after remineralization in microhardness and SEM evaluation but there was no significant difference between the different study groups in the surface roughness results.
Conclusion: All of three agents BAG, CPP-ACP and fluoride varnish are capable to remineralize early carious lesions while BAG is more effective than CPP-ACP but eventually both have similar remineralization potential which is higher than the fluoride.
Keywords: Remineralization, bioactive glass, microhardness, surface roughness.

Introduction

Dental caries is a chronic, multifactorial, infectious disease initiated by acids from bacterial metabolism diffusing into enamel and dentine (1). The caries development is thought to be active during demineralization periods more than periods of remineralization. To restore the natural equilibrium, either remineralization must be improved, or demineralization must be inhibited (2). The early enamel lesions have a potential for remineralization with an increased resistance to further acid challenge, mostly with the use of enhanced remineralization treatments (3).

The use of fluoride (F) agents in various forms is a verified method that strengthens the enamel structure, making it less liable to demineralization by the formation of stronger fluorapatite crystals and enhancing enamel remineralization (4).

Casein phosphopeptide (CPP) is a phosphopeptide obtained from milk protein casein that contains phosphoseryl sequences and stabilizes the calcium phosphate in nanocomplexes. CPP prevents dissolution of calcium and phosphate ions by binding with amorphous calcium phosphate (ACP) (5). It has been shown in both in vivo and in vitro studies that CPP-ACP can remineralize the enamel subsurface lesion (6, 7).

Recently, bioactive glass materials have been introduced in many fields of dentistry. This unique material has several novel features, most significant of which are its ability to act as a biomimetic mineralizer matching the body's own mineralizing behavior while also affecting cell signals in a way that benefits the restoration of tissue structure and function (8).

Bioactive glass is considered to be a breakthrough in remineralization technology (9), it is a multi-component inorganic compound made up of elements such as silicon, calcium, sodium and phosphorus. The active ingredient is amorphous calcium sodium phosphosilicate. This compound in aqueous environment release bioavailable calcium, sodium and phosphate ions contributing to the remineralization process (10).

Therefore, the present study was conducted on different remineralizing agents to assess the effect of using them on the remineralization, microhardness and roughness of primary teeth induced enamel caries.

Materials and methods

Materials:
1) Bioactive glass (BAG) nano-paricles paste, Nanostreams Company, Cairo.
2) Casein phosphopeptide – Amorphous calcium phosphate (CPP-ACP) paste (GC tooth mousse) GC Company.
3) Fluoride varnish (Fluor Protector) Ivoclar Vivadent.
4) 37% phosphoric acid gel.

Methods:
A total of sixty primary molar teeth extracted for orthodontic reasons or naturally exfoliated with sound buccal surfaces were selected forming sample of the study. The
teeth were cleaned of soft-tissue debris with distilled water and highly polished. The teeth were stored in 0.1 % thymol until further use.

The radicular part of each tooth was removed. The coronal part was sectioned mesiodistally into two halves using low speed diamond tipped disc. The buccal surfaces were mounted in an acrylic resin molds with the enamel surface exposed. Then samples were randomly distributed into four groups. The specimens were divided according to the remineralizing agents into four equal groups:

1) Group A: Bioactive glass paste (n=15).
2) Group B: CPP-ACP (n=15).
3) Group C: Fluoride varnish (n=15).
4) Group D: Control group (n=15).

The control group (n=15) was subjected to a baseline microhardness testing and surface roughness. Then the rest of experimental specimens were subjected to artificial caries like lesions formation before the treatment by the application of 37% phosphoric acid gel on the whole buccal surface. It was applied for 20 minutes to demineralize the enamel surface to simulate early enamel lesions. Then the specimens were rinsed with water and dried. The buccal surface was divided into two halves by a marker. A microhardness test was applied after demineralization on one half of the sample. Surface roughness test was applied on the other half.

The BAG paste, CPP-ACP paste and fluoride varnish were applied on the whole demineralized tooth surface every day for 10 days. After each application, samples were washed under distilled water and stored in artificial saliva. Another final microhardness test and surface roughness were recorded on the two halves of the specimens.

Result

Regarding the mean values and standard deviations for enamel microhardness (Kgf/mm²) of demineralized and remineralized samples, it was found that the highest mean at demineralization stage was obtained for group B (286.50) then group A (279.94) with the least was for group C (255.87) while the control group was (362.33) as shown in Table (1). After remineralization, group B (362.28) had the same value as control group (362.33) and the mean for group A showed increased mean value than the demineralized value which almost equivalent to the control group. The least recovery in the microhardness value was with Fluoride group (306.25).

Table (1): Comparison of the mean surface microhardness values of the studied groups during demineralization and after remineralization.

<table>
<thead>
<tr>
<th>Microhardness test</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Group D</th>
<th>Test of significance between demineralization and remineralization</th>
</tr>
</thead>
</table>
| Demineralization | 279.94±16.88a | 286.50±12.14c | 255.87±16.29ce | 362.33±33.78bde | F=55.31 P<0.001*
P_A<0.001*
P_B<0.001*
P_C<0.001* |
| After remineralization | 356.79±18.66a
b | 362.28±26.45b
c | 306.25±17.06ab
c | 362.33±33.78bc | F=14.35 P<0.001*
P_A=0.589
P_B=0.99
P_C<0.001* |
| Test of significance between demineralization and remineralization | t=19.68
P<0.001* | t=11.32
P<0.001* | t=10.79
P<0.001* | |
The mean values for enamel surface roughness after demineralization and after remineralization as shown in Figure (1), that the highest mean value at the demineralization stage was obtained for group A then group C with the least was for group B while the control group had the least roughness value. There were no statistical differences between the groups.

Figure (1): Bar chart showing mean surface roughness after demineralization and after remineralization among studied groups.

Discussion

Minimal intervention dentistry depends on the least invasive treatment options possible to reduce tissue loss and patient discomfort. Focusing mainly on prevention and early interfering with caries, as its first basic principle is to remineralize early carious lesions, enhance a biological or therapeutic method instead of the traditional surgical way (11).

In this study, primary molars were selected because they are different histologically than permanent teeth. Also they are more susceptible to caries as the children tend to eat more sugars in their dietary habits (12). As well as remineralization of the primary teeth is more easy and less stressful than restoration due to difficult management of the children in the dental clinics (13). In the present study, 37% phosphoric acid was used for 20 minutes to demineralize the enamel surface simulating an early carious lesion. As a result of that, adequate microhardness and surface roughness variations were obtained so that the following remineralization could be well differentiated and compared. This was agreed by Palaniswamy et al. (14) and Vashisht et al. (15) who used the same duration to get demineralized enamel surface.

Regarding the result of the present study, there was statistically significant difference between studied groups and the control group after demineralization. While after remineralization, the results showed that both BAG and CPP-ACP have a highly significant recovery and an increase in the microhardness values compared to fluoride varnish. But the result of all the studied groups revealed increased values when compared with results after demineralization. These results was supported by Mehta et al (16), Palaniswamy et al (14) while Esfahani et al (17) suggested that there was improvement in the microhardness of CPP-ACP.
and fluoride varnish due to long term and repeated application for a month.

The results of surface roughness in this study showed no significant difference between the different study groups when compared to the control after demineralization. This result was in acceptance with China et al (18), on the other hand, Mathias et al (19) found that the surface roughness decreased after the application of CPP-ACP. This would be explained as they used abraded surfaces by bleaching agents for roughened enamel.

Conclusion

BAG is more effective than CPP-ACP but eventually both have similar remineralization potential which is higher than the fluoride regarding the surface microhardness with no or minimal effect in surface roughness for the three agents.

References